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Abstract— Sensor data can be fused with data acquired through laboratory analysis or from costly real time sensors which may offer data 
after a time delay. Because of these operations we may come across out of sequence measurement (OOSM) data. In this work, fixed point 
smoothing is used to deal with the OOSM problem.  An extended Kalman filter (EKF) is utilized to fuse data. The developed algorithm is 
tested on a distillation column and a continuous stirred tank reactor (CSTR).  

Index Terms— data fusion, sensor fusion, out of sequence measurement, extended Kalman filter, fixed point smoothing, distillation 
column, continuous stirred tank reactor. 

——————————      —————————— 
1 INTRODUCTION                                                                    
In chemical processes, the foremost problem for effective 
quality control is the shortage of real-time measurements of 
the major variables, due to time delays and lengthy and 
irregular sampling times. Instead, predictive models can be 
designed based on the stored measurement data and/or 
mechanism information. The model gives the relationship 
between obtainable process variables and quality variables to 
provide fast estimations of the difficult-to-measure quality 
variables.  

There are numerous modeling methods [1]. Every 
modeling method unavoidably has limitations, owing to their 
internal operation mechanism and the variety of diverse 
industrial processes. In addition, a chemical process is 
typically complex and time-varying, which also increases the 
effort required for accurate model estimation. 

To efficiently supplement the model estimation with 
several instrumental observations under noises, data fusion 
method is a decent choice. By assimilating multi-source 
observations, data fusion process could extract the useful 
information and resist disturbances [2]. Kalman filter is one of 
the most extensively used data fusion methods. It is an 
optimal observer based on the information of process and 
related noises. Kalman filter has the benefit of multi-source 
data fusion, dynamic execution and noise resisting. 
Meanwhile, it is suitable for multi-rate and delayed 
measurement systems. The Kalman filter method is a 
recursive algebraic algorithm, which is also appropriate for 
online applications [3].  

The idea of including delayed measurements within a 
Kalman filter structure has been well documented in the 
literature. In tracking and navigation systems substantial time 
delays get introduced due to the involvedness of computation 
or network delay from multiple sensors sending data to the 

estimator. The sampling times are of the order of milliseconds 
and techniques anticipated in literature to deal with delays [4] 
mainly depend on fusing the information from the delayed 
measurement directly into the filter when it arrives.  

In chemical process systems, the problem of dealing with 
delayed measurements typically occurs as a result of delays in 
measurement of certain quality variables. These 
measurements (called primary measurements) are sampled 
rarely and are accessible with a delay, while other variables 
are measured regularly and the measurements are obtainable 
instantaneously (secondary measurements). For example, in 
distillation columns the distillate and bottoms compositions 
are frequently required to be analyzed in a laboratory.  
Because the employment and up keeping of online analyzers 
is impracticable due to economic considerations, whereas 
secondary measurements such as tray temperatures are 
acquired regularly without any time delay. The primary 
variables are thus inferred from the temperature 
measurements, which might be inaccurate owing to model 
errors (plant-model mismatch), sensor bias or un-modeled 
disturbances. In such cases the primary measurements, which 
are available with a delay because of offline assesses, is 
required to be combined into the estimator. Time delays in 
multi-rate estimation have frequently been dealt with in 
literature for process systems using appropriate augmentation 
of the states. Gudi et al. [5] employed multi-rate state 
estimation techniques with delayed measurements for a 
fermentation process in a bioreactor. Tatiraju et al. [6] studied 
estimation techniques for a polymerization reactor in the 
company of delayed measurements of the molecular weight 
distribution. Mutha et al. [7] suggested a technique for multi-
rate state estimation in a polymerization reactor that 
compensates for the slow measurements by repeatedly using 
the available slow measurements. Amirthalingam et al. [8] 
augmented the state with past measurements to deal with 
delays in the primary measurement for an identified linear 
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model. The state augmentation technique is employed in the 
chemical and biochemical processes because the state-space 
design is maintained, which simplifies the extension of delay-
managing methods to other techniques, such as moving 
horizon estimation (MHE) [9], nonlinear dynamic data 
reconciliation (NDDR) [10], unscented Kalman filter (UKF), 
particle filters, etc. In many examples, the time delay for 
primary measurement was of the order of a few sampling 
periods (usually one or two samples) was assumed to be 
constant and known in advance. Extension to indeterminate 
delays, while abstractly clear, has not received enough 
consideration. When time delay is large and/or indefinite, it is 
required to use techniques that can deal with uneven and 
time-varying delays competently. The aim of this paper is to 
offer an analysis and to evaluate through simulation studies a 
method to cope with measurement delays in multi-rate 
estimation using extended Kalman filter (EKF) for process 
systems. Extension of fixed point smoothing Kalman filter to 
manage out of sequence measurements as well as 
simultaneously receiving multiple measurements are 
discussed [11]. 

This paper is organized as follows. Section 2 defines the 
basic system and filter equations. In Section 3 the techniques 
for state-vector fusion and measurement fusion are presented. 
Section 4 discloses the out of sequence measurement problem. 
The algorithm coping with measurement delays within the 
EKF structure is explained in section 5. The distillation column 
and CSTR case studies are explained in Section 6. Results and 
discussions are given in Section 7. Finally, Section 8 sums up 
the conclusions of this work. 

2 NONLINEAR MODEL ESTIMATOR 
The system in this study is described by a state space model. 
At time k the state is represented as Xk, and the input is 
designated as kv . The state space model of the system is given 
as: 

( )1 ,k k k kX f X u v+ = +                                                       (1) 

where kv  is the Gaussian process noise. At time k the process 
measurements are given by:  

( ),k k k kY g X u w= +                                          (2) 

where kw  is the Gaussian measurement noise. The two noise 
sources kv and kw  are assumed to be normally distributed 
white noise sequences with zero mean and covariance 
matrices Q and R , respectively. 

To resolve the state estimation problem an extended 
Kalman filter (EKF) is used [12]. This procedure involves two 
steps: the time update step and the measurement update step. 
In the time update step, (1) is used to update the states and 
covariances as: 

 1
ˆ ˆ

kk k k kX F X+ =       (3) 

1
T

kk k k kP F P F Q+ = +      (4) 

where |
ˆ

k kX should be taken as the estimate of X at time 
k given measurements up to time k and kF is the linearization 

of (1) about 1
ˆ

k kX −  . When a measurement is obtained, (5) is 
used to update the mean of the state estimate. To update the 
covariance estimate, the measurement model is linearized 
at 1 ˆ

k kX − , i.e., the estimate of the previous time update step. 
The Kalman filter equations for the measurement update 

are: 

( )( )1 1g ˆ  ˆ ˆ
k kk k k k k kX X K y X− −= + −             (5) 

( ) 1k kk k k kP I K G P −= −                             (6) 

where kG  is the linearization of (2) around 1
ˆ

k kX − , and the 
Kalman gain is: 

1
1 1( )T T

k k k kk k k kK P G G P G R −
− −= −     (7) 

3 MEASUREMENT FUSION MODEL 
For simplicity, consider that the sensors’ sample rates are alike 
and the dynamics of the system is given by (1). The 
measurements corresponding to the two sensors are: 

1,2,m m m
k k k kY G X w m= + =          (8)                                              

where m
kY  is the measurement of the sensor m at time k and 

the measurement noise sequences m
kw   are zero-mean, white, 

with covariance m
kR  , and the sensors are mutually 

independent, i.e., 

0;m m mT m
k k l k klE w E w w R δ   = =        (9) 
1 2 2 1 0T T
k l k lE w w E w w   = =                                       (10) 

Fusion of these tracks can now occur at either the state 
vector or measurement vector level. 

The fusion merely merges the measurements into an 
augmented observation vector [13]. The measurement vectors 

1
kY  and 2

kY from the two (or more) sensors are merged into a 
new augmented measurement vector given by:  

( ) ( )1 2
TT T

k k kY Y Y =   
                                                          (11) 

Denote  ( ) ( )1 2
TT T

k k kG G G =   
  and    ( ) ( )1 2

TT T

k k kw w w =   
 

Then from (8) and (11) a new measurement equation is 
given by: 

k k k kY G X w= +                                                 (12) 

Based on the presumed statistical independence of the two 
sensors the covariance matrix R  for the merged measurement 
noise kw  is given as:  

1

2

0
0

R
R

R
 

=  
 

                                                               (13) 

Consequently, the estimate,  ˆ
k kX , of the state vector can be 

determined by the conventional Kalman filter. The 
measurement fusion procedure is shown in Fig. 1.  

4 OUT OF SEQUENCE MEASUREMENTS PROBLEM 
Fig. 2 shows an illustration of a process with irregular and 
delayed measurements [12], [16]. Here we assume that the 
sensor A has the smallest delay time. Its delay time is 
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considered to be equal to zero.  
 

 
Fig. 1. The measurement fusion process. 

 
Fig. 2. The scenario of centralized fusion where the OOS phenomenon 
occurs. 

In the first sampling time line (at the top) the circles 
represent the sampling times by the sensor A. The square at 
the middle sampling time line represents a sample from the 
sensor B.  The sensor B measurement arrives with a delay of 
NS time intervals. The sample that is generated by the sensor 
A at the time step k is denoted as  1

ky  and the sample from 
sensor B at the time step s is denoted as 2

sy . Consider the time 
step k is represented with a hollow circle (the time line at the 
bottom) in Fig. 2. At this time step the sensor A measurement 
( 1

ky ) and sensor B measurement ( 2
sy ) arrive in the same 

computational instant.  However, the sensor B measurement 
belongs to the NS preceding sampling time. The measurement 
from the sensor with a longer delay time (i.e., sensor B) is 
considered as an OOS measurement. 

The output of the sensor A is given as:  
1 1 1( )k k kY g X w= +                      (14) 

Since the sensor B measurement arriving at time k is related 
to the state at time s, the output of the primary measurement 
is given by: 

2 2 2( )k ssY g X w= +                     (15) 

We end this section by noting that the linearized form of 
the outputs given by  (14) and (15) are: 

( ) { }
1ˆ

,    1,  2
k k

i
i
k

x

g X
G i

X
−

∂
= =

∂
                                  (16) 

Measurement delays cause problems in multi-rate sensor 
estimations in process systems. This necessitates the use of 
alternate methods that can take into consideration the out of 
sequence measurements.      

5 HANDLING OUT OF SEQUENCE MEASUREMENTS 
To solve the problem of out of sequence measurements we 

employ the fixed point smoothing method. Since the delayed 
measurement is a function of the state sX , only the 
information of this state is required to be retained until the 
measurement is performed. The aim in fixed point smoothing 
is to attain a priori state estimates of sX at times s+1, s+2, …, 
k,…. We will use the notation |s kX  to refer to the estimate of 

sX  attained by using all the measurements up to and 
including the time step (k-1). 

That is, |
ˆ

s kX  can be considered as the a priori estimate of 
sX  at time k: 

( )|k 1 1| , , ˆ ,s S kX E X Y Y k s−= … ≥                               (17) 

Thus, when the primary variable is sampled, we will 
assume a new state variable X ′ . This new state variable will 
be initialized as ( ) ( )X s X s′ =  . This idea is depicted in Fig. 3. 

 
Fig. 3. This illustrates the idea that is used to obtain the fixed-point 
smoother. 

Augmenting the dynamics of our newly defined state X ′   
to the original system results in the following: 

1
1

1

0
0 0

k kk
k

k k

X XF I
v

X XI
+

−
+

     
= +     ′ ′    

                 (18) 

( ) [ ] ( )
( )

        0k k

X k
Y k G w

X k
 
 
 

= +
′

                        (19) 

The estimation is performed by the following equations: 

( )( )1
ˆ ˆ ˆ

k k k k k kX F X K y g X+ = + −                (20) 

( )( )1
ˆ ˆ ˆ

k k k k kX X y g Xλ+′ ′ ′= + −                (21) 

( ) 1T T
k k k k k kK P G G P G R

−
= +                (22) 

( ) 1
Σ T T

k k k k k kG G P G Rλ
−

= +                (23) 

( ) 1
1 'k k k k k kPP F F K G Q−
+ = − +                (24) 

1Π Π Σ T T
k k k k kG λ+ = −                 (25) 

( )1Σ Σ ' T
k k k k kF GK+ = −                 (26) 

where kK  is the standard Kalman filter gain of the estimate of 
X , kλ  is the Kalman filter gain of the smoothed estimate of 
X  at the time step  k, Πk  is the state error covariance of the 
smoothed estimate of X  at the time step  k and Σk is the cross 
covariance between  kP  and Πk . 

The Kalman filter will consequently update both the 
current state ˆ

kX  and the lagged state ˆ
sX ′  during the 

measurement delay. When the delayed measurement is 
received at the sampling point (s +Ns), it is fused with the 
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smoothed estimate of ˆ
sX ′ . The state space matrix K ′  (the 

augmented Kalman filter gain) defined below by (27) is 
substituted for kK  used in (3) through (7). Similarly, the state 
space matrix P ′  (the augmented state error covariance 
matrix) defined by (28) is substituted for kP used in (3) through 
(7).   

'k
k

K
K

λ
′ 

=  
 

                 (27) 

1 1

1 1

 Σ
Σ  Π  

T
k k

k k

P
P + +

+ +

 
= 


′ 


                (28) 

After the primary measurement is perfectly fused at the 
sampling point (s +Ns), the lagged state ˆ  sX ′ is not needed any 
more. This technique can be applied to the case of 
indeterminate and time varying delays.  

6 DESCRIPTION OF PROCESSES 
6.1 The Binary Distillation Column 
Distillation columns are usually good testing plants for 
nonlinear model identification. Hence, we consider a 
distillation column with 30 trays for the separation of a binary 
mixture based on the proposed model by Hahn and Edgar 
[15]. The feed stream is introduced at the middle of the 
column on stage 17. Fig. 4 shows the schematic of this column. 

 
Fig. 4. A schematic of the binary distillation column. 

The purity of the distillate is measured. The equations for 
this simulation are: 

For the reflux drum (i = 1): 

( ),
,2 ,1

1A i
f A A

cond

dx
V y x

dt A
= −                                             (29) 

where condA is the total molar holdup in the condenser, Vf is 
the vapor flow rate in the column (mol.min-1), , A ix  is the 
liquid composition of component A on the ith stage and ,A iy   
is the vapor composition of component A on the ith stage.  

For the trays in the rectification section (i = 2… 16): 

( ) ( ),
1 , 1 , , , 1

1A i
A i A i f A i A i

Tray

dx
L x x V y y

dt A − + = − − −                 (30) 

where trayA     is the total molar holdup on each tray and L1 is 
the flow rate of the liquid in the rectification section     
(mol.min-1). 

For the feed tray: 

( ) ( ),17
, 1 ,16 2 ,17 ,17 ,18

1A
f A Feed A A f A A

Tray

dx
F x L x L x V y y

dt A
 = + − − −     (31) 

where Ff is the feed flow rate (mol.min-1), ,A feedx   is the feed 
composition of component A and L2 is the flow rate of the 
liquid in the stripping section.     

For the trays in the stripping section (i = 18… 31): 

( ) ( ),
2 , 1 , , , 1

1A i
A i A i A i A i

Tray

dx
L x x V y y

dt A − + = − − −                (32) 

For the reboiler: 

( )( ),32
2 ,31 ,32 ,32

1A
A f f A A

Reboiler

dx
L x F D x Vy

dt A
 = − − −            (33) 

where reboilerA     is the total molar holdup of the reboiler and 
Df is the distillate flow rate (mol.min-1). 

Further equations: 

1f fV L D= +                  (34) 

2 1fL F L= +                  (35) 

1 /r fR L D=                  (36) 

where Rr is the reflux ratio. 

( )
( ),

1
1

A A
A B

A A

y x
y x

α
−

=
−

                (37) 

where , A Bα  is the relative volatility. 
In this work, values assigned to some of the variables used 

in the above equations are defined in Table 1. 

6.2 The Continuous Stirred Tank Reactor    
A CSTR with a simple exothermal reaction A→B is shown in 
Fig. 5. For the development of a mathematical model for this 
process, the following assumptions are made: neglect the heat 
capacity of the inner walls of the reactor, constant density and 
specific heat capacity of liquid, constant reactor volume, 
constant overall heat transfer coefficient, and equal input and 
output volumetric flow rates. As the reactor is well-mixed, the 
outlet stream concentration and temperature are identical with 
those in the tank. A mass balance of the component A can be 
expressed as: 

( ) ,A
AV A A

dc
V qc qc Vr c T

dt
= − −                 (38) 

where V is the reactor volume (m3),  Ac  is the molar 
concentration of A in the outlet stream (kmol.m-3), q is the 
volumetric flow rate of reaction mixture (m3.min-1), AVc  is the 
molar concentration of A in the inlet stream (kmol.m-3), r is the 
rate of reaction, and T is the temperature of reaction mixture. 
The rate of reaction is a function of concentration and 
temperature (Arrhenius law) and is given as: 
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0( ,T) exp( / ( )) cA c A c e Ar c k c k E R T= = −                       (39) 

 

TABLE 1 
MODEL PARAMETERS FOR DISTILLATION COLUMN 

 

 
Fig. 5 . A non-isothermal CSTR. 

where 0ck  is the frequency factor, E is the activation energy 
(kJ.kmol-1) and  eR is the Reynolds number (kJ.kmol-1.K-1)  

The heat balance gives the equation: 

( ) ( ) ( ),     

p
p V p

h c A

V c dT
q c T q c T

dt
F T T V H r c T

r
r r

α

= −

− − + −∆
                   (40) 

where ρ is the liquid density (kg.m-3), cp is the liquid specific 
heat capacity (kJ.kg-1.K-1), vT   is the temperature in the inlet 
stream (°K), α is the overall heat transfer coefficient                
(kJ.m-2.min-1.K-1), hF is the heat transfer area (m2), Tc  is the 
cooling temperature(°K), ΔH is the heat of reaction (kJ.kmol-1).  

Equations (39) and (40) express the nonlinear system model 
of the CSTR. Parameter values of the reaction and reactor are 
shown in Table 2. 

7 SIMULATION RESULTS 
In this section the performance of the  method  described in 
section 5 (EKF2) is compared with standard EKF described in 

section 2 (EKF1) using the distillation column and CSTR case 
studies described in section 6.  

TABLE 2 
PARAMETERS OF THE REACTION AND THE REACTOR 

 
7.1 Simulation Results of the Distillation Column 
Details of the model derivation and description are given in 
section 6.1. The related equations are expressed by the 
following standard nonlinear state space model form: 

( ) ( ) ( )( ), 
dX t

f X t U t
dt

=                         (41) 

( ) ( )( )1 1Y t g X t=                  (42) 

( ) ( )( )2 2Y t g X t=                                (43) 

where ( )X t  is the liquid mole fraction of component A on all 
30 trays, the reflux drum and the reboiler; U ( )t  is the reflux 
ratio (Rr); ( )1Y t  is the temperature of reboiler and reflux 
drum; ( )2Y t  is the liquid mole fraction of the component A 
in the reboiler and reflux drum. 

The noise variances used are as follows. The measurement 
error covariances for the frequent temperature measurements, 
R1=10−3 and for the delayed concentration measurements, 
R2=10−8; and the process noise, Q=10−6. The EKF1 is started 
with an initial estimation error P0 =10−5. The process is initially 
at an unsteady state and the estimator is given an incorrect 
starting guess. Both the EKF1 method (uses only the 
secondary measurements) and EKF2 method (uses the 
secondary and the delayed primary measurements) are 
considered. The estimator performance is tested in the 
presence of the state and measurement noises.  

In the EKF1 method, the secondary temperature 
measurements are available at every sampling instant. In the 
EKF2 method, the samples for the primary composition are 
taken at a regular interval of 12 min, starting from the time 
step  k=1. The delay TD in the measurement arrival is equal to 
8 min. 

The performance of the estimators in the presence of noise is 
shown in Figs. 6 and 7.  In these figures, the solid lines represent 
the plant (actual values), the dashed lines represent the EKF1 
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method estimation responses and the doted lines represent the 
EKF2 method estimation responses. Fig. 6 shows the reflux 
drum liquid mole fraction of the component A and Fig. 7 shows 
the reboiler liquid mole fraction of the component A. 

 
Fig. 6. Reflux drum liquid mole fraction of the component  A. 

 
Fig. 7. Reboiler  liquid mole fraction of the component  A. 

The mean square error (MSE), as defined by the following 
equation, is used to quantify the difference between the 
estimated profile in each of the EKF1 and EKF2 methods and 
its corresponding actual profile.  

( )2

1

1 ˆ
n

i i
i

MSE X X
n =

= −∑                   (44) 

where n is the number of sample points, ˆ
iX   is the estimated 

value and iX  is the actual value. Table 3 gives the MSEs for 
the liquid mole fractions of the component A for both of the 
reflux drum and the reboiler.  

These results indicate that for the distillation column case 
study, even in the presence of noise, each of the EKF2 
estimators tracks the plant quite well whereas the estimators 
based only on the temperature measurements (EKF1) show 
significant offsets from their corresponding actual plant 
profiles. 

TABLE 3 
 MEAN-SQUARED ERROR (IN UNITS OF 10-5) 

 
7.2 Simulation Results of the CSTR 
Details of the mathematical model derivation for the CSTR are 
given in section 6.2. The process is initially at an unsteady 
state and the estimators are given an incorrect starting 
estimate. Both the EKF1 and EKF2 methods are considered. 
The performances of the estimators are tested in the presence 
of the state and measurement noises. The noise variance used 
is as follows. The measurement error covariance for the 
temperature of reaction mixture R1 = 10-3 and for the delayed 
concentration of the component A, R2= 10-6. 

In the EKF1 method, the secondary temperature 
measurements are available at every sampling instant.  In the 
EKF2 method, the samples for the primary composition are 
taken at an irregular interval that varies between 6-10 min, 
starting from the time step of k=12. The delay TD in the 
measurement arrival is equal to 4 min. 

Fig. 8 shows the simulation and estimation results for the 
CSTR. In this figure, the solid line represents the plant (actual 
values), the dashed line represents the EKF1 method 
estimation response and the doted line represents the EKF2 
method estimation response. 

 
Fig. 8. Molar concentration of A in the outlet stream. 

Table 4 gives the MSE for the concentration of A in the 
outlet stream. The MSEs are calculated for the two estimation 
methods (EKF1 and EKF2) discussed in this work. 

These results indicate that for the CSTR case study even in 
the presence of noise, the EKF2 estimator tracks the plant quite 
well whereas the estimator based only on the temperature 
measurements (EKF1) shows  significant offsets from the 
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actual plant. 

TABLE 4 
 MEAN-SQUARED ERROR (IN UNITS OF 10-4) 

 

8 CONCLUSION 
In this work, the extended Kalman filter is employed for 
sensor data fusion. The estimation of states is carried out in 
the presence of noise. The data fusion method has been 
proposed to deal with multi-rate sensors systems. The fused 
estimate is better than the Kalman filtering result based on 
each single sensor’s information. The EKF was employed to 
fuse primary and secondary measurement data in a 
distillation column and a CSTR. In the presented case studies, 
the estimators performed significantly better than the 
estimators exclusively employing the secondary 
measurements. The method presented in this work can be 
employed to deal with unknown (and arbitrarily varying) 
delays in the primary process variables. In addition, it is 
applicable to other estimation techniques and other filters, 
such as UKF, MHE or particle filters.  
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